Dendrobates tinctorius
Dyeing Poison Frog | family: Dendrobatidae subfamily: Dendrobatinae genus: Dendrobates |
![]() © 1994 Hugo Claessen (1 of 108) |
|
|
Description Distribution and Habitat Country distribution from AmphibiaWeb's database: Brazil, French Guiana, Guyana, Suriname
The forests are humid, always have rocky streams of running water, and are relatively cool, with temperatures dropping up to 22-27 degrees C at night. Dendrobates tinctorius is found under cover, such as rocks and moss, near streams. It usually stays on the ground, but is also found at heights up to 5 m in trees. Life History, Abundance, Activity, and Special Behaviors Comments This species was featured as News of the Week on 16 July 2018: The startlingly bright colors and intricate patterns of Neotropical poison frogs are icons of warning coloration. Barnet et al. (2018) show in a recent paper that at least in Dendrobates tinctorius, the bright color patterns may simultaneously scream "Here I am!" to nearby would-be predators, yet be relatively undetectable to predators farther away. They measured the frog’s complex patterns of yellow and blue on a black background as perceived by different types of potential predators (reptiles, birds, mammals). Using a machine learning algorithm, they assessed the ability of different visual systems to discriminate D. tinctorius from a leaf litter background at different distances. Close up, discrimination by each visual system was highly accurate, but far away, discrimination declined dramatically. In the field, they used model frogs with different color patterns to show that cryptic (brown and black) models had fewer predation attempts against a natural leaf-litter background, whereas background did not affect the attack rates on purely aposematic (bright yellow) models. The tinctorius color pattern also had lower attack rates against the natural background, indicating an element of protective camouflage. Experiments with human "predators" trying to find frogs on a computer screen showed the tinctorius color pattern was just as aposematic as the bright yellow morph close-up, but from a distance was just as hard to see as cryptic coloration. They conclude a kind of perceptual averaging occurs, in which the different colors of the intricate pattern blend together at a distance, making the frogs virtually invisible in their natural background (Written by Kyle Summers). This species was featured as News of the Week on 15 July 2019: The larvae-toting parental care of many species of the Family Dendrobatidae is known to be an effective way to ensure tadpoles have food and protection while they develop. A study by Pašukonis, Loretto and Rojas (2019) asked further about the role of this parental shuttling in dispersal. With tiny radio transmitters, they tracked two poison frog species (Ameerega trivittata and Dendrobates tinctorius) and found that they moved their offsprings farther and to many more water sources than expected, with little regard to suitable, nearby pools. Examining the spatial patterns of the far-ranging fathers, the authors speculate on the adaptive benefits of ensuring the dispersal of their offspring to reduce competition and possible inbreeding against the increased costs and risks associated with long-distance travel. Their study highlights the parental role in offspring dispersal and the spatial acuity of these poison frogs (Written by Michelle Koo.) This species was featured as News of the Week on 28 October 2019: The evolution of warning signals, such as bright coloration, by chemically defended organisms is of key interest in evolutionary biology. We expect warning signals to be stable and conservative, so would-be predators can rely on these signals to avoid ingesting harmful toxins. Yet in many cases warning coloration is highly variable across species and populations, even within populations. Lawrence et al. (2019) use a variety of tests to investigate color variation between two populations (one with white, and one with yellow stripes) of the dyeing poison frog, Dendrobates tinctorius, known for its extraordinary color pattern variation. Using Plasticene frog models in the field, they show white striped frogs were protected in the range of the yellow frogs, but suffered higher attack rates in their own range, compared to the yellow frogs. The yellow frogs had lower overall levels of toxins, yet were more aversive to bird predators. Hence, white colored individuals would be protected in the range of the (highly aversive) yellow frogs, potentially leading to polymorphism. If individuals with the white stripes colonized a new habitat and became isolated (founder effect), this could lead to the formation of an all-white population. This may be what produced the between-population variation currently observed between the two D. tinctorius populations in this study. Genetic analyses revealed a complete lack of gene flow between the populations, which would shield the white population from invasion by the yellow phenotype (Written by Kyle Summers).
References
Walls, J. G. (1994). Jewels of the Rainforest: Poison Frogs of the Family Dendrobatidae. J.F.H. Publications, Neptune City, New Jersey. Wollenberg, K. C., Veith, M., Noonan, B. P., and Lotters, S. (2006). ''Polymorphism versus species richness—systematics of large Dendrobates from the Eastern Guiana Shield (Amphibia: Dendrobatidae).'' Copeia, 2006(4), 623-629. Originally submitted by: Franziska Sandmeier (first posted 2006-12-29) Edited by: Kellie Whittaker, Ann T. Chang (2019-10-29) Species Account Citation: AmphibiaWeb 2019 Dendrobates tinctorius: Dyeing Poison Frog <https://amphibiaweb.org/species/1646> University of California, Berkeley, CA, USA. Accessed Jul 2, 2022.
Feedback or comments about this page.
Citation: AmphibiaWeb. 2022. <https://amphibiaweb.org> University of California, Berkeley, CA, USA. Accessed 2 Jul 2022. AmphibiaWeb's policy on data use. |