Xenopus laevis
Common Plantanna, African Clawed Frog
family: Pipidae

© 2003 Alexander Haas (1 of 31)

  hear call (148.4K RM file)
  hear call (7839.3K WAV file)

[call details here]

Conservation Status (definitions)
IUCN (Red List) Status Least Concern (LC)
NatureServe Status Use NatureServe Explorer to see status.
Other International Status None
National Status None
Regional Status None


View distribution map using BerkeleyMapper.


Xenopus laevis varies in size; males (45.6 to 97.5 mm) tend to be be smaller than females (57 to 147 mm). Their heads and bodies are depressed and flattened and they have small round eyes on the top of their heads. The skin is smooth and the hind limbs are long and robust. The three inner toes of the large fully webbed feet have small black claws on them. The body color is usually dark-gray to greenish-brown dorsally, and pale ventrally (Trueb 2003).

Despite the genomic revolution, the first complete genome of a frog, Xenopus tropicalis, was sequenced only in 2010. Session et al. (2016) have sequenced the genome of Xenopus laevis. Because X. tropicalis is diploid and X. laevis is tetraploid, important inferences can be made about genome evolution. Based on analysis of the rate of synonymous mutations in protein-coding genes, they estimated that the two species diverged from each other about 48 mya, a date is remarkably close to the estimate based on phylogenetic analysis of fossils, morphology, and other genomic sequences. They also calculated that the lineage of tetraploid Xenopus species originated 17–18 mya from two now extinct diploid ancestors.

Distribution and Habitat

Country distribution from AmphibiaWeb's database: Angola, Botswana, Cameroon, Central African Republic, China, Congo, Congo, the Democratic Republic of the, Estonia, Gabon, Kenya, Lesotho, Malawi, Mozambique, Namibia, Nigeria, South Africa, Swaziland, Tanzania, United Republic of, Zambia, Zimbabwe. Introduced: Chile, France, Indonesia, Italy, Mexico, Portugal, United Kingdom, United States.

U.S. state distribution from AmphibiaWeb's database: Arizona, California, Texas


View distribution map using BerkeleyMapper.
This species occurs in savannas of the Republic of South Africa, Kenya, Uganda, Democratic Republic of Congo, and Cameroon. This frog has high tolerance to change in its environment and will survive in nearly any body of water. It can be found in water bodies ranging from ice-covered lakes to desert oases. Unlike most frogs, the African clawed frog can also survive in water with high salinity (Trueb 2003).

Life History, Abundance, Activity, and Special Behaviors
These frogs spend most of their life-cycle in the water, only to leave when there is a drought. When a drought occurs, they will burrow into the drying mud. They can survive up to a year without food. Their diet consists of a wide range of animals including fish, crustaceans, insects, and other frogs. They will also scavenge on dead frogs, fish, birds, and small mammals (Trueb 2003).

Trends and Threats
Not threatened.

Relation to Humans
This is one of the most-studied species of frogs, considered one of the model systems of developmental biology. It is hardy and breeding can be easily induced in the laboratory. Xenopus laevis early development has been studied by developmental biologists for decades and its genome has been fully sequenced. Because it makes a hardy and popular pet, it can also be found in aquariums worldwide. This species has been used as food in African countries (Trueb 2003).


Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJC, Fujiyama A, Harland RM, Taira M, & Rokhsar DS. (2016). ''Genome evolution in the allotetraploid frog Xenopus laevis. .'' Nature, 538, 336-343.

Trueb, L. (2003). ''Common platanna, Xenopus laevis.'' Grzimek's Animal Life Encyclopedia, Volume 6, Amphibians. 2nd edition. M. Hutchins, W. E. Duellman, and N. Schlager, eds., Gale Group, Farmington Hills, Michigan.

Written by Peera Chantasirivisal (Kris818 AT, UC Berkeley
First submitted 2005-10-13
Edited by Kellie Whittaker, updated by David Cannatella and Sierra Raby (2017-04-27)

Species Account Citation: AmphibiaWeb 2017 Xenopus laevis: Common Plantanna <> University of California, Berkeley, CA, USA. Accessed Sep 19, 2018.

Feedback or comments about this page.


Citation: AmphibiaWeb. 2018. <> University of California, Berkeley, CA, USA. Accessed 19 Sep 2018.

AmphibiaWeb's policy on data use.